Solid-State Pulsed Electric Field (PEF) Overview Technology and Markets

Presentation Summary

Introduction to DTI

IVERSIFIED TECHNOLOGIES. INC

- Core Technology
- Introduction to PEF
 - Major PEF Subsystems
 - Treatment Chambers for Fluid
 - Treatment Chambers for Bulk Products
 - PEF System Goals
 - Basic Sizing Relationships
 - PEF Commercialization History
 - PEF R&D Status
 - PEF Regulation
 - PEF System Manufacturers

- Overview of PEF Applications
 - Rationale for PEF
 - Non-Thermal Pasteurization
 - Cost Comparisons
 - Extraction
 - Drying Acceleration
 - Material Modification
 - Wastewater Treatment
- DTI Equipment
 - Laboratory Scale PEF System
 - Industrial Scale PEF System
 - PEF Costs

DIVERSIFIED TECHNOLOGIES, INC.

• Founded 1987 by Dr. Marcel Gaudreau (MIT)

- Located in Bedford, MA, USA
- 60 Employees
- 6 PhDs (EE, Physics, Aero)
- Diverse Technical Background
- 33,000 Square ft
- Products
 - Solid State Modulators, Power Supplies
 - RF Transmitters
 - PEF Systems
- Primary Business Areas:
 - High Power Electronic Systems
 - System Design and Integration
 - Manufacturing/Process Automation Systems
 - Consulting Engineering

Core Technology – HV Solid-State Switches

Very Fast High Current, HV Solid-State Switches

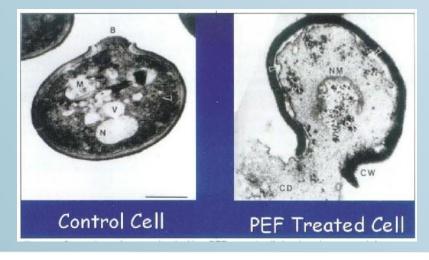
- Series String of Transistors
 - All Operate Synchronously
 - Patented Design

IVERSIFIED TECHNOLOGIES, IN

- Very High Voltage and Current Demonstrated
 - Up to 500 kV (500,000 Volts)
 - Up to 20 kA (20,000 Amperes)
- Extremely Uniform & Reliable Pulses
 - Sub-Microsecond Switching
 - Arbitrary Pulsewidth & Frequency
 - 1 nS CW; > 300 kHz Continuous

Solid-State Switch Modules

60 kV, 250 kW Power Supply


4

Pulsed Electric Field (PEF)

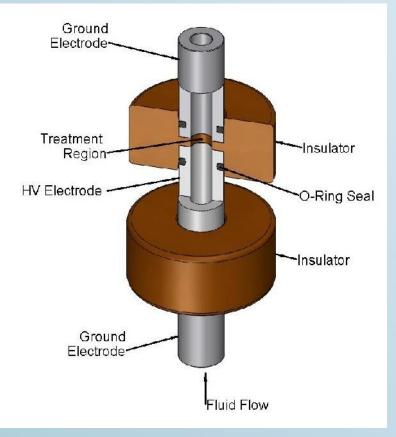
- Uses Short, High Voltage Pulses to Perforate Cell Membranes
 - 'Electroporation'

IVERSIFIED TECHNOLOGIES, IN

- Similar to Gene Therapy Processes, at Larger Scale
- Short = microseconds
- High Voltage = 1 50 kV/cm
- Instantaneous Penetration through Tissue
- Permanently Damages/Breaks Cell Membrane
- Very Low Energy

Major PEF Subsystems

• DC Power Supply


DIVERSIFIED TECHNOLOGIES, INC

- Converts Wall Power into High Voltage DC Power
- Rated in Average Power (Watts)

Pulse Modulator

- Stores and Releases Average
 Power in High Peak Power
 Pulses
- Key Parameters Peak Voltage and Peak Current
- Treatment Chamber
 - Applies Voltage Pulse to Product
 - Fluids / Non-Thermal Pasteurization (R)
 - Fruits, Vegetables in Water Bath

6

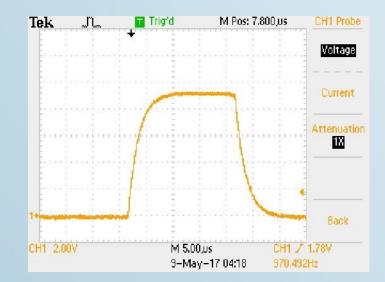
PEF for Bulk Products

- Product in Water Bath
- Conveyor / Flume

DIVERSIFIED TECHNOLOGIES, INC.

- Move Product
- Apply HV Pulses
- Very High Throughput
 - Microsecond-Scale Treatments
 - No Holding Time
 - In-Line at Tons / Hour

PEF System Goals


- Apply Very Short, High Voltage (HV) Pulses to Product
 - PEF Requires Very High Fields
 - Pulses vs Continuous Power
 - Avoid Boiling

DIVERSIFIED TECHNOLOGIES, INC

- Prevent Arcing
- Consistent and Controllable
 - Field Strength (kV/cm)

8

- Treatment Time (μS)
- Adapt to Changing Product Attributes

Basic Sizing Relationships

- Inputs: Field Strength, Dose, Conductivity
 - Flow Rate Determines Average Power (Power Supply)
 - Treatment Chamber Gap Determines Pulse Voltage
 - Pulse Current:

IVERSIFIED TECHNOLOGIES, INC

- Voltage x Conductivity x Chamber Size (Area / Gap)
- Pulse Power = Voltage x Current
- Switch Size / Cost Determined by Pulse Power
- Other Trade-Offs:

9

- Pressure vs Voltage vs Chamber Diameter
- Peak Power vs Pulse Frequency
- Multiple Treatment Chambers

PEF Commercialization History

- First Commercial Scale System 2000 (DTI for OSU / DUST, right)
- First Commercial PEF NTP Products 2005 (Genesis Juice)
 - Genesis Sold (Financial Issues) 2007
 - Many Believed PEF Was at Fault
 - Reality Products Were Popular and Sales Were Increasing Faster Than Genesis Could Support
- Financial Crash 2008

ERSIFIED TECHNOLOGIES, IN

- Limited Interest For 4 5 Years
- Renewed Commercialization ~ 2012
 - Primarily Europe, Shelf Life Extension
 - Increased Interest Last Two Years

PEF R&D Status

- Over 1,000 Peer Reviewed Papers
- Research at Numerous Institutions Around the World
- Significant Data Available

DIVERSIFIED TECHNOLOGIES, INC.

- Pulsed Electric Field: 887k Google Hits
- Pulsed Electric Field, Juice: 70k Google Hits
- PEF, Orange Juice: 29k Google Hits
- 21 Books on Amazon; Over 50 on Google
- Over 100 Patents / Applications Worldwide (~ 40 US)

• Significant R&D Background for PEF

PEF Regulation

- PEF Has Been Approved in the US For Juices by FDA
 - 5-log Reduction in Pathogens Required
 - Genesis Juice Met this Standard

WERSIFIED TECHNOLOGIES, INC

- Perceived Risk No one Else is Doing It
- Several Examples of PEF Processed
 Juice In Europe
 - Shelf-life Extension vs Food Safety
 - Sold As Fresh Juice (Unlabeled)
 - Lower European Threshold vs Other Markets?

by Hoogestiger

Regulation is an Issue, Especially in US

PEF System Manufacturers

- Diversified Technologies, Inc. (USA)
- DIL / ELEA (Germany)

IVERSIFIED TECHNOLOGIES, IN

- +4 Additional European Companies
- Primarily Solid-State Pulsed Power Systems
- 4 300 kW + Average Power
- Range of Applications and Installations

Overview of PEF Applications

- Non-Thermal Pasteurization
 - Juices

WERSIFIED TECHNOLOGIES, INC

- Slurries (Salsa, Salad Dressing)
- Extraction
 - Algal Oil and Intracellular Materials
 - Fruit & Vegetable Juices
 - Starches & Sugars
- Drying Acceleration
 - Plant Tissue

- Material Modification
 - Slicing/ Peeling
 - Frying
 - Fermentation Improvement
 - Reduced Freezing Time
 - Others?
- Wastewater Treatment
 - Disinfection
 - Pre-Digestion
 - Denitrification

Rationale for PEF

• Premium Product (Non-Thermal Pasteurization)

- Better Taste
- Less Denaturation
- Economic

DIVERSIFIED TECHNOLOGIES, INC

- Lower Cost (Extraction, Slicing, Drying)
- Higher Yield (Extraction)
- Higher Efficiency (Digestion, Separation)
- Indirect Effects
 - Elimination of Other Processes/Chemicals
 - Lower Oil Uptake in Frying
 - Absorption of Additives
 - Less Breakage During Slicing
 - Access to Intracellular Compounds
 - More to be Discovered!

PEF Application – Non-Thermal Pasteurization

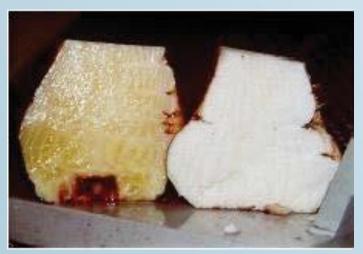
- Non-Thermal Pasteurization
 - Researched for Over 20 Years
 - Electroporation Kills Microbes
 - Pasteurization Equivalence at Low Temperature
 - Typically 25 40 kV / cm Field Strength
 - Continuous Flow

DIVERSIFIED TECHNOLOGIES, INC.

- Typically Estimated at \$0.02 0.05 / liter
- From Sampedro:
 - PEF \$0.037 / liter (Orange Juice)
 - Thermal Pasteurization \$0.015 / liter (~ 1/3 PEF Cost)
 - HPP \$0.107 / liter (~ 3X PEF Cost or More)
- Other Direct Comparisons Show Similar Scaling
- Industrial Applications Vary Wildly
 - Key Is Existing Cost Without PEF
 - Energy / Time / Equipment Savings With PEF
- Cost Does Not Appear to be a Limiting Factor

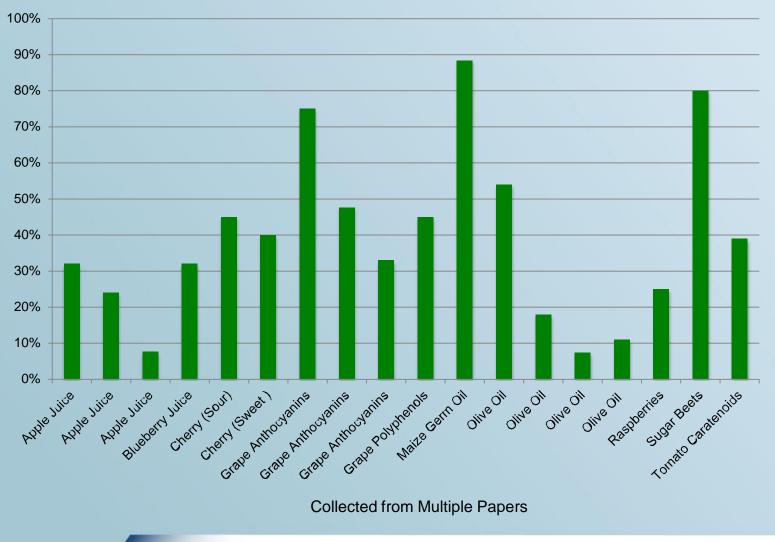
COST ANALYSIS AND ENVIRONMENTAL IMPACT OF NONTHERMAL TECHNOLOGIES, Sampedro, F. et al 2013

PEF Application - Extraction


- Higher Yield / Lower Energy
- Increased Nutrients
- Sugar Beets

WERSTEIED TECHNOLOGIES, INC

- Yield More than Doubles
- Better Quality / Less Water
- Much Lower Energy Costs
- Olive Oil: Up to 54% Higher
- Grape Polyphenols: 3X Higher
- Wet Extraction of Lipids
 - Faster
 - No Drying Costs
 - Less Hazardous Solvents

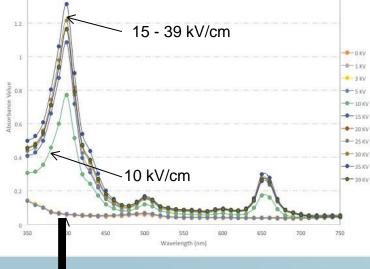

Grape Maceration – 1 Day = 1 Week

Sugar Beets

Extraction Yield Improvement

Extraction for Algae (Chlorella vulgaris)

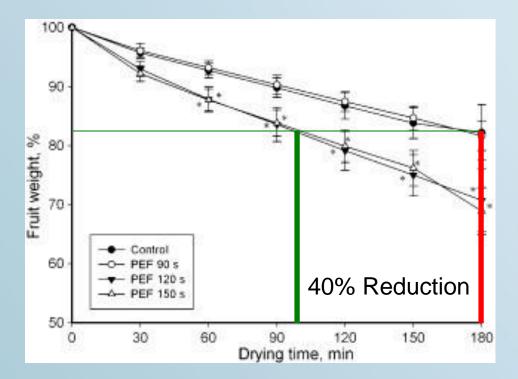
DIVERSIFIED TECHNOLOGIES, INC.


1.4

Control – 5 kV/cm

Post-PEF and Centrifuge (0 - 39 kV/cm, 20 µs) Visible Release > 10 kV/cm

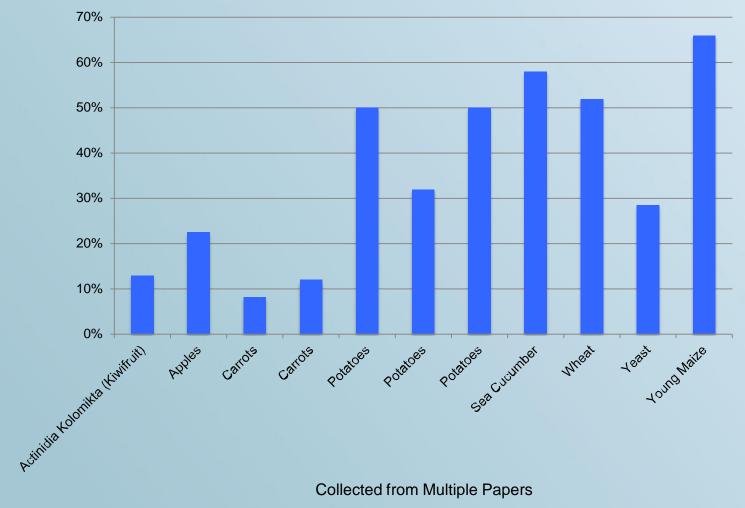
LRB 1201 Spectral Scan of Supernatant after PEF Treatment



PEF Application – Drying Acceleration

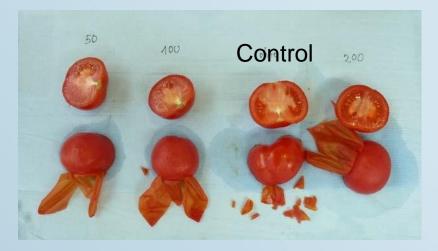
• Plant Tissue

DIVERSIFIED TECHNOLOGIES, INC


- Faster = Lower Energy
- Potatoes: 25% Reduction
- Carrots: 50% Reduction
- Fruit: 40% Reduction
- Larger Pieces Greater Improvement
 - Intracellular Liquids Available
 - Longer Path to Surface for Water

Plant Drying

Drying Time Reduction

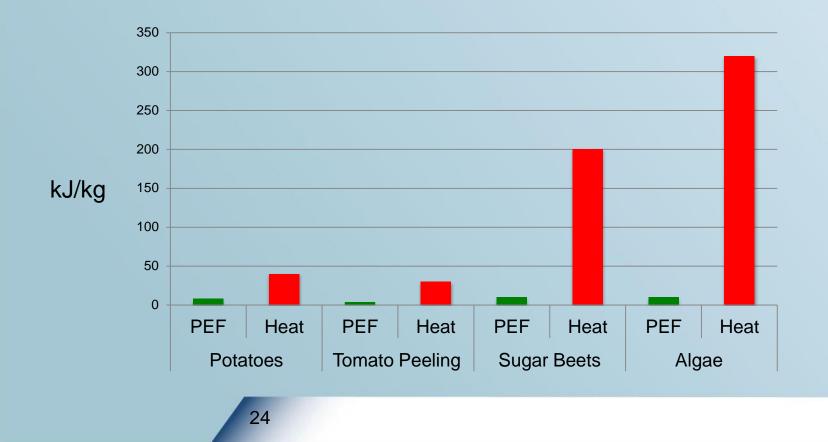


PEF Application – Material Modification Cutting / Peeling

- Reduced Energy: 20 50%
- Faster Than Thermal Blanching

IVERSIFIED TECHNOLOGIES, INC

- Less Breakage / Waste
- Major PEF Application Potatoes For Fries / Chips
 - Reduced Energy
 - Significantly Reduced Oil Uptake
 - < 6 Month ROI Reported</p>
 - Approximately 50 PEF Systems Fielded to Date



Energy Usage (kJ/kg)

Data From Actual Trials / Similar End Results

DIVERSIFIED TECHNOLOGIES, INC.

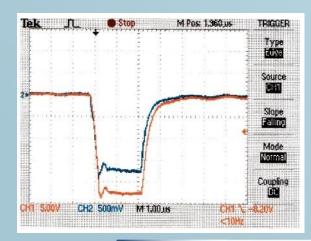
- Only Energy Usage Excludes Yield Improvements
- Cost Delta is Somewhat Lower (Oil or Gas vs Electricity)

PEF Application – Wastewater Treatment

- Pre-Digestion (Increased Methane / Decreased Solids)
- Hospital Wastewater Treatment

IVERSIFIED TECHNOLOGIES, INC

- Kill Antibiotic Resistant Strains Before Discharge
- No Holding time (Unlike UV/Chlorine)


Control; 30 kV/cm, 125 μs ; 30 kV/cm, 195 μs

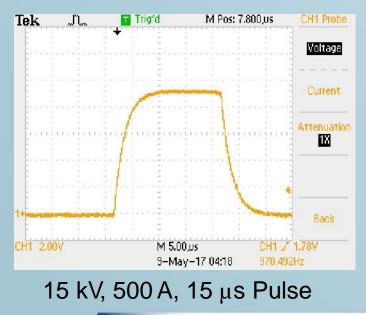
Laboratory Scale PEF System

Mono-Polar

DIVERSIFIED TECHNOLOGIES, INC

- 10 20 kV, 100 A Pulses
- Pulse Frequency Up to 1400 Hz
- 5 10 kW Average Power
- ~ 50 liters/hr
- \$85k USD with Pump and Single Treatment Chamber

26



Industrial Scale PEF System

- Scalable to Tons / Hour
 - 50 600 kW Average Power
 - 10 50 kV Pulses @ 500 A Peak
 - Multiple kHz Pulse Frequencies
- Compact

DIVERSIFIED TECHNOLOGIES, INC

- Fully Automated / Integrated Controls
- Up to 10,000 liters (tons) / hour
- Solid-State Series Switch

PEF Costs

• Primary Cost - Power

IVERSIFIED TECHNOLOGIES, INC

- Power is a Function of V² (Tissue Modification <<<< NTP)
- Power Scales With Throughput (for Given Treatment Protocol)
- Efficiency Is Key
 - PEF System Typically 85 95% Efficient (Wall Plug to Electrode)
 - Pulse Shape Critical (Square Pulse is most Efficient)
- 100 kW ~ \$100k Annual Electric Cost (at \$0.10 / kWhr)
- Capital Equipment \$1.50 \$3 per Watt
 - For 50 kW and Above
 - Excludes Material Handling (Pumps, Conveyors, etc.)
- Electrode Costs Are Minimal
- Maintenance Very Low for Solid State Systems